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A simple model for simulating cross correlations of a many-assets market is discussed. Correlations between
assets are initially considered within the context of the well-known one-factor model, in which a driving term
common to all stocks is present. The results are compared to those of real market data corresponding to a set
of 445 stocks taken from the Standard and Poors 500 index. The model is further extended by introducing a
stochastic volatility within each time series using an autoregressive scheme. This artifical market reproduces
the empirically observed fat tails in the distribution function of logarithmic price variations and, more impor-
tant, leads to additional cross correlations between the time series, in better agreement with the real market
behavior.
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I. INTRODUCTION

Very often the underlying mechanisms responsible for the
unpredictable behavior of a complex system are not known.
Typically, the temporal �or spatial� behavior of the system
can be characterized by recording the simultaneous varia-
tions of observables associated to each of its single compo-
nents. The variations are represented in the form of time
series, from which one can determine the degree of correla-
tion between them.

In the case of a many-component complex system, an
accurate description of such cross correlations requires the
use of a large number of parameters. A challenging complex
system is a stock market, typically composed of several hun-
dreds or thousands of assets which are necessarily interre-
lated to each other, either because they belong to the same
economic sector, or because of circumstantial factors deter-
mined by the global market behavior �1�.

In a recent paper, Bonanno et al. �2� have analyzed the
structure of a many-assets market by looking at the so-called
minimal spanning tree �MST�. They show that the ubiquous
one-factor model �1� leads to wrong predictions regarding
several features typical of real market MST. In this paper, we
elaborate such a model further by introducing a stochastic
volatility �see, e.g., �3,4�� that, in keeping with the simplicity
of the approach, significantly improves its performance. In
particular, the variable volatility, introduced within an au-
toregressive approach and constructed to reproduce the fat
tails of the empirical probability distributions, has the inter-
esting merit of inducing additional cross correlations be-
tween the assets such that the internal structure of the result-
ing MST becomes similar to that of the market.

The paper is organized as follows. In Sec. II we analyze
real market data and introduce the basic definitions and sta-
tistical quantities of interest. In Sec. III, the one-factor model
is discussed and the results compared to the Standards and
Poors 500 �S&P500� data. In Sec. IV, the additional ingredi-
ent of a stochastic volatility, obtained within a one-parameter
autoregressive model, is introduced. Limitations of the
model are discussed in Sec. V. Finally, in Sec. VI we present
our conclusions.

II. REAL MARKET DATA: STATISTICAL ANALYSIS

We consider daily �close� price variations for a set of
N=445 stocks taken from the Standard and Poors 500 index,
spanning a time interval of T=1600 trading days �5� �1994–
2001�. Here, we consider the logarithm of the ith stock price,
ln P̄i, as the working variable, and denote its daily variation
at day t as �S̄i�t�=ln�P̄i�t� / P̄i�t−1��, with 1� i�N. Vari-
ables carrying the overline will indicate real market values.

In order to proceed with the analysis, we define the mean

market variations �S̄0 as

�S̄0�t� =
1

N
�
i=1

N

�S̄i�t� , �1�

which is playing the role of the market index. Other possible
definitions of the index, i.e., by using weighted averages of

�S̄i�t�, yield similar quantitative results. Further, we denote
the variance �square “volatility”� of stock i as, �i

2

= ���S̄i�2�T− ��S̄i�T
2, and the associated index volatility as �0.

Here, the averages are evaluated over the whole time series
of length T.

The probability distribution function �PDF� P�g� of daily

variations �S̄i�t� is shown in Fig. 1 as a function of the

scaled variable g���S̄i− ��S̄i�T� /�i. To be noted is that P�g�
displays long tails for 	g 	 �1, decaying as a power-law
P�g�
	g	−�, with ��5. Notice also that for the present data,
the PDF turns out to be slightly asymmetric �6�, with a
longer tail for negative values of g. In this work, however,
we will disregard such an asymmetry and consider a mean
decaying exponent ��4.75 at both sides of the distribution
in our fitting procedure �see Sec. IV below�.

A central role in the model is played by the correlation, or
covariance, between stock i and the index, defined as

C̄i,0 =
1

�i�0

���S̄i�S̄0�T − ��S̄i�T��S̄0�T� . �2�

Results for the present data are reported in Fig. 2, where one
can see the rather conspicuous correlations between assets
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and the index �6�, having a mean value of about 0.45.
The corresponding cross correlation between stocks i and

j is denoted as C̄i,j. The distribution of C̄i,j will be shown
later and compared with model predictions in Sec. III and IV.

From C̄i,j, one can define a distance d̄i,j between the two
stocks according to

d̄i,j = �2�1 − C̄i,j� . �3�

One way of characterizing the resulting internal structure of
the market is to evaluate the minimal spanning tree �2�. The
latter is a loopless structure having the minimal chemical
length, where each node �asset� is connected to its closest
one and no isolated parts are present. The resulting MST for
the real market can be visualized in Fig. 3. The market tree
displays few large clusters of nodes reflecting the stock sub-
division in economic sectors �2�, and a complex ramified
structure. We consider next the problem of modeling the
stock market discussed so far.

III. ONE-FACTOR MODEL: CROSS CORRELATIONS
BETWEEN ASSETS

We start by modeling the daily variations of the logarith-
mic price of asset i �Si according to the one-factor model
�OFM� �1,2�,

�Si�t� = �i + �i�G�t� + 	i
i�t� , �4�

where �i, �i, and 	i are parameters, �G is the driving sto-
chastic process common to all stocks, and 
i is a random
number, drawn from a Gaussian distribution with zero mean
and unit variance.

Following the OFM, we identify �G�t� with the real mar-
ket index variations, which are here obtained from the mean
stock variations according to Eq. �1�, i.e., we assume that

�G�t�=�S̄0�t� in Eq. �4�. Next, the set of three parameters
�i, �i, and 	i can be determined for each stock i by imposing

the three conditions: ��Si�T= ��S̄i�T, �i=�i, and Ci,0= C̄i,0,

containing the first and second moments of �S̄iand its corre-
lation with the market index. In this way, we expect to re-

produce the behavior of the real stock �S̄i with the OFM
counterpart �Si. This fitting procedure then yields �see Ap-
pendix A for details�

�i =
�i

�0

C̄i,0,

�i = ��S̄i�T − �i��S̄0�T,

	i = �i
�1 − C̄i,0

2 . �5�

Using the above expressions, Eq. �4� becomes

�Si�t� = ��S̄i�T + �iC̄i,0�A�t� + �i
�1 − C̄i,0

2 
i�t� , �6�

where the driving factor �A= ��S̄0− ��S̄0�T� /�0, has zero
mean and unit variance.

We can now verify that the average over the N time series
in Eq. �6� is consistent with the variations of the market
index, i.e.,

FIG. 1. �Color online� The PDF of scaled logarithmic price

variations P�g� versus g= ��S̄i− ��S̄i�T� / �̄i, for the set of 445 stocks
taken from the S&P500 index �full circles�. The dashed line is a fit
with the form f�x�
	x	−� for 	x 	 �2, where �=4.75. The Gaussian
distribution is represented by the continuous line.

FIG. 2. The distribution function of stock-index correlations C̄i,0

for the 445 stocks from the S&P500 index.

FIG. 3. �Color online� The minimal spanning tree �lines� for a
set of 445 stocks �full circles� taken from the S&P500 index. The
MST has been constructed using the Whitney’s Algorithm 422 �7�
and drawn using the Tulip software �8�.
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1

N
�
i=1

N

�Si�t� =
1

N
�
i=1

N

��S̄i�T + �A�t�
1

N
�
i=1

N

�iC̄i,0, �7�

obtained by neglecting the term �1/N��i=1
N 	i
i, which is

small in absolute value and at most of O�1/�N�. Then, using

the definition of C̄i,0 from Eq. �2�, we find

1

N
�
i=1

N

�iC̄i,0 =
1

�0
� 1

N
�
i=1

N

�S̄i�S̄0�
T

−� 1

N
�
i=1

N

�S̄i�
T

��S̄0�T�
=

1

�0

����S̄0�2�T − ��S̄0�T
2� = �0, �8�

yielding, together with the definition of �A in Eq. �6�,

1

N
�
i=1

N

�Si�t� = ��S̄0�T + �0�A�t� = �S̄0�t� . �9�

We have numerically verified that Eq. �9� is indeed accu-
rately satisfied.

Let us consider next the internal structure of the OFM
artificial market. It is straightforward to show that now the
cross correlations Ci,j �see Appendix A for details� are given
by,

Ci,j = C̄i,0C̄j,0, i � j , �10�

indicating that the driving term is the only source of corre-
lation between the ith and jth time series. We have calculated
numerically the whole set of values Ci,j for the OFM and
obtained the corresponding probability distribution function.
The latter is compared with the real market results and
shown in Fig. 4.

As is apparent from the figure, the OFM fails to describe
the long positive tail of the cross correlations distribution of
the market. If, for instance, such large cross-correlation
events occur for a pair of stocks in which one, or both, of
them are weakly correlated to the index, then Eq. �10� un-
derestimates their mutual correlation, yielding a faster decay-

ing tail. The resulting MST has therefore a low similarity
with that of the real market, as can be inspected from Fig. 5.
In particular, a central dominating cluster is evident and the
ramifications show a higher degree of order as compared to
the more random structure of the S&P500 MST.

There is another important drawback of the OFM regard-
ing its PDF of logarithmic price variations. The latter has a
Gaussian shape �see, e.g., the continuous line in Fig. 1�, i.e.,
it lacks fat tails. This failure can be repaired in a simple way
by introducing a stochastic volatility in the artificial time
series, as we discuss in the following.

IV. STOCHASTIC VOLATILITY: FAT TAILS
AND MINIMAL SPANNING TREE

A stochastic volatility associated to �Si�t�, Eq. �6�, can be
introduced by defining a new variable in the form

�Si��t� = �i��t�
�Si�t�

�i

, �11�

where the variable volatility �i��t� obeys a one-parameter
Auto-Regressive Conditional Heteroskedaticity �ARCH�
model �9� of the type

�i�
2�t� = ai + b��Si��t − 1��2. �12�

As is well known, the resulting PDF of the logarithmic varia-
tions �Si� displays power-law decaying tails, with an expo-
nent � that depends on b �10,11�. In this work, we use the
value b=0.6 for all artificial time series, which yields �
�4.75, as dictated by the market PDF shown in Fig. 1. Us-
ing the result ��i�

2�=ai / �1−b�, the parameter ai can be de-
termined by the condition ��i�

2�=�i
2, yielding

ai = �1 − b��i
2. �13�

Stochastic volatility models have been considered exten-
sively in the literature �see, e.g., �4,9,12,13�, and refs.
therein�. A particular stochastic volatility model has been
considered recently within the context of modeling a market
index �14�.

FIG. 4. The PDF of the cross-correlations Ci,j between the 445
time series �open circles� obtained using the OFM, Eq. �6�. The
corresponding results obtained from the 445 stocks of the S&P500
index are shown by the full circles.

FIG. 5. �Color online� The minimal spanning tree �lines� for a
set of 445 time series �full circles� generated using the OFM, Eq.
�6�.
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In the present model, that we denote as the one-factor
ARCH model �OFAM�, the driving factor �A used in Eq. �6�
can itself be taken as a one-parameter ARCH variable with
zero mean and unit variance, i.e., with a=1−b. We have
verified that this choice yields similar quantitative results as
in the case in which �A is taken from the real market data. In
the following, we use the same driving term as in Eq. �6� to
be consistent with the previous results.

We show below that the average over the N time series in
Eq. �11�, here denoted as �I�t�, still behaves as the variations
of the market index. Let us first evaluate the former analyti-
cally by neglecting, for simplicity, the term proportional to 
i
in Eq. �11� �cf. also Eq. �7��, yielding the approximate ex-
pression

�I�t� �
1

N
�
i=1

N
�i��t�

�i

��S̄i�T + �A�t�
1

N
�
i=1

N

�i��t�C̄i,0. �14�

Note that Eq. �14� reduces to Eq. �9� in the case of no sto-
chastic volatility �i��t�=�i, i.e., when b=0 in Eq. �12�. The
comparison between the full numerical results for the aver-
age value I�t�=�t�=1

t �Si��t�� and the real market one, G�t�
=�t�=1

t �S̄0�t��, is shown in Fig. 6. Clearly, I�t��G�t� over
the whole time scale considered.

Let us consider now the behavior of the correlations. The
presence of a variable volatility �i��t� yields a new correla-
tion Ci,0� between asset i��0� and the driving term �A, which
reads �see the Appendix B for details�

Ci,0� =
1

�i
2 ��S̄i�T��i��A�T +

C̄i,0

�i

��i���A�2�T, �15�

which reduces to Eq. �2�, i.e., Ci,0� = C̄i,0, when �i��t�=�i. Al-

though the values Ci,0� � C̄i,0, the corresponding distribution
function is similar to the real market one �Fig. 2�, i.e.,

P�Ci,0� �� P�C̄i,0�.
Similarly, the cross correlations between assets Ci,j� with

i� j, are modified with respect to Ci,j by the presence of the
stochastic volatility, yielding �see Appendix B for details�,

Ci,j� � C��i��A,� j��A�C̄i,0C̄j,0 + C��i�,� j��
��S̄i�T

�i

��S̄j�T

� j

+ C�� j�,�i��A�C̄i,0
��S̄j�T

� j

+ C��i�,� j��A�C̄j,0
��S̄i�T

�i

,

�16�

where C�Xi ,Y j�= ��XiY j�T− �Xi�T�Y j�T� / ��i� j�. One can see
that in the case of no stochastic volatility, i.e., when �i�=�i

and � j�=� j, then Ci,j� = C̄i,0C̄j,0=Ci,j as in Eq. �10�.
The results for the PDF corresponding to Ci,j� , P�Ci,j� �,

obtained numerically from the artificial time series are re-
ported in Fig. 7. As is apparent from the figure, P�C�� devel-
ops a much longer tail for C��0 than its OFM counterpart
shown in Fig. 4, in better agreement with the market data.
Thus, the presence of a stochastic volatility induces addi-
tional cross correlations among the time series with respect
to the OFM, Eq. �10�.

The question now is whether such additional correlations
produce a satisfactory internal metric. To answer this ques-
tion, we have calculated the corresponding MST for the se-
ries generated using the OFAM. The results shown in Fig. 8
seem to confirm this expectation when compared to those
from the real market, Fig. 3.

A more quantitative test consists in calculating the degree
of nodes for the tree. The degree of a node represents the
number of connections �also called edges� impinging on it.
As one can see from Fig. 9, the distribution functions of the
degree of nodes for the market and for the OFAM virtually
coincide, yielding further support to our model.

V. LIMITATIONS OF THE MODEL

The previous features indicate the suitability of a stochas-
tic volatility, in addition to the basic asset-asset correlations
introduced within the OFM, to describe global aspects of the
market. However, some discrepancies emerge when analyz-
ing the results in more detail.

One way of assessing the accuracy of the previous models
is to study the MST when the mean stock variation �or index�
is also included in the set of assets as the N+1 time series.

FIG. 6. �Color online� Comparison between the driving index
G�t� �thick black line� and the OFAM result I�t� �thin line� versus

trading days, obtained from the partial sums G�t�=�t�=1
t

�S̄0�t�� and
I�t�=�t�=1

t
�Si��t��, respectively.

FIG. 7. The PDF of the cross correlations Ci,j� �i� j� between the
445 time series �grey circles� obtained using the one-factor ARCH
model, Eq. �11�. The results are compared with those from the
S&P500 market �full circles�.
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The corresponding tree for the S&P500 market is shown in
Fig. 10. Now the tree displays a clear one-center shape due
to the presence of the index, although the resulting structure
still displays a rather significant ramification.

The results for the OFM and OFAM are reported in Figs.
11 and 12, respectively. It is clear that the OFAM is a bit
superior to the OFM �the latter showing essentially a single-
cluster tree�, but still inapropriate as compared to the real
market behavior. We have implemented different variants of
the OFAM to reproduce this market feature �Fig. 10�, with-
out obtaining any significant improvement. This problem
therefore remains open.

There is another aspect of the model which deserves some
attention. This regards volatility-volatility correlations. It is
well known, for instance, that for real markets the volatility
autocorrelation function has a long-time memory, decaying
as a power-law �15� with quite small exponents, typically in
the range 0.1–0.3. Here, we wish to show this market behav-
ior and compare it with model predictions. For this purpose,
we have considered the mean autocorrelation function of the

absolute returns 	�S̄i�t�	 defined as the average over the
whole data set as

CV��� =
1

N
�
i=1

N

CV
�i���� , �17�

where

CV
�i���� =

1

�V
2�i�

��	�S̄i�t�		�S̄i�t + ��	�T − �	�S̄i	�T
2� �18�

is the volatility autocorrelation function of series i, and �V
2�i�

is the corresponding variance. The function CV��� is dis-
played in Fig. 13, suggesting that for the real market CV���
has indeed a long power-law tail, here decaying with an ex-
ponent of about 0.2.

The OFAM results, on the other hand, show an exponen-
tial decay with a characteristic time scale of about 1.8 days.
�We have checked that the slower decay displayed by the
OFAM results at large �’s is due to the lack of sufficient
statistics. A more involved simulation yields an exponential

FIG. 11. �Color online� Same as in Fig. 10 for the OFM
market.

FIG. 8. �Color online� The minimal spanning tree �lines� for a
set of 445 time series �full circles� generated using the one-factor
model with stochastic volatility, Eq. �11�.

FIG. 9. The distribution function of the degree of nodes P�k�
versus degree k for the minimal spanning trees corresponding to the
real market �full circles� and to the OFAM one �grey circles�.

FIG. 10. �Color online� The minimal spanning tree for the set of
445 stocks plus a 446th series corresponding to their average values
�“index”�, obtained for the S&P500 market.
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decay up to ��10 with a time decay of about 1.5 days.� It is
known that such exponential decay is typical of ARCH mod-
els �15�. Thus, the question remains of how a long-time
memory can be implemented within our scheme to reproduce
the empirical behavior. This goal goes beyond the aim of the
present work and will be considered elsewhere.

VI. CONCLUSIONS

We have modeled the internal structure of a stock market
by introducing correlations between each asset �time series�
and a driving stock or index within the context of the one-
factor model. The further introduction of a stochastic volatil-
ity for each time series, using a single ARCH parameter
�9,10�, considerably improves the performance of the model
as reflected by the statistics of the corresponding minimal
spanning tree. Indeed, the one-factor model with ARCH
volatility introduced here leads, in addition to a power-law
decaying PDF of logarithmic returns, to further cross corre-
lations between stocks in closer agreement with real market
behavior.

We have also generated a fully artificial market by taking

the OFM parameters from the empirical PDF’s, P�C̄i,0�,
P��i�, and P���S̄i�T�, instead of using the actual values

��Si�T= ��S̄i�T, �i=�i, and Ci,0= C̄i,0, for each artificial time
series as in Eq. �5�, and the driving series from an ARCH
model with the parameter b=0.6. The results are quantita-
tively similar to those presented here.

Discrepancies between the model and the observed mar-
ket behavior, however, still remain to be understood and
solved. These concern the underestimation of stock-stock
cross correlations at the positive tail of the distribution. In-
deed, the real market PDF displays a rather large skewness
and fat tail which is difficult to simulate within the simple
context of the OFAM. Another important issue regards the
lack of long-range memory in volatility-volatility correla-
tions within the OFAM which needs to be addressed in the
future. Despite these drawbacks, we may conclude that the
OFAM can serve as a “minimal” model of a many-stock

market, which reproduces satisfactorily some of its structural
features quantified by the minimal spanning tree.

APPENDIX A: OFM

The present version of the OFM is given by

�Si�t� = �i + �i�S̄0�t� + 	i
i�t� , �A1�

where �S̄0�t� is the mean stock variation of the real market,
Eq. �1�, �i, �i, and 	i are constant parameters, while the
random numbers 
i obey �
i�=0 and �
i

2�=1. In the follow-
ing, we calculate the first two moments of Eq. �A1� and its

cross correlation with �S̄0�t�. We find,

��Si�T = �i + �i��S̄0�T �A2�

and

���Si�2�T = �i
2 + �i

2���S̄0�2�T + 2�i�i��S̄0�T + 	i
2 �A3�

from which we obtain,

�i
2 = ���Si�2�T − ��Si�T

2 = �i
2�0

2 + 	i
2, �A4�

where �0
2= ���S̄0�2�T− ��S̄0�T

2. The cross correlation �covari-
ance� of �Si�t� with the driving term �S0�t� is, by definition
�cf. Eq. �2�� given by

Ci,0 =
1

�i�0

���Si�S̄0�T − ��Si�T��S̄0�T� , �A5�

where

��Si�S̄0�T = �i��S̄0�T + �i���S̄0�2�T, �A6�

yielding

Ci,0 = �i
�0

�i
. �A7�

Now, imposing the three conditions: ��Si�T= ��S̄i�T, �i=�i

and Ci,0= C̄i,0, we arrive at the expressions quoted in Eq. �5�,

FIG. 12. �Color online� Same as in Fig. 10 for the OFAM
market.

FIG. 13. �Color online� Mean autocorrelation function for the
absolute value of returns �volatility� for the real market �full circles�
and for the OFAM �grey circles�. The dashed-dotted line is a power-
law fit to the real market data of the form y=0.135�−0.2, while the
continuous line is the exponential fit y=0.825 exp�−� /1.8� to
OFAM data. The values of CV��� for the OFM remain below 10−2

and are not shown in this figure.
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�i =
�i

�0

C̄i,0,

�i = ��S̄i�T − �i��S̄0�T, �5�

	i = �i
�1 − C̄i,0

2 .

Let us consider next the cross correlation between the
series i and j, which is given by,

Ci,j =
1

�i� j

���Si�Sj�T − ��Si�T��Sj�T� . �A8�

Using Eqs. �A1� and �A2�, and taking into account that
�
i
 j�=0 for i� j, we find

Ci,j =
1

�i� j

�i� j�0
2, �A9�

which, according to Eq. �A7� yields the expression quoted in
Eq. �10�

Ci,j = C̄i,0C̄j,0, i � j . �10�

APPENDIX B: OFAM

The OFAM is constructed by starting from the built-in
correlations within the OFM according to

�Si�t� = ��S̄i�T + �iC̄i,0�A�t� + �i
�1 − C̄i,0

2 
i�t�, �6�

where both �A and 
i have zero mean and unit variance, and
used within the stochastic volatility scheme,

�Si��t� = �i��t�
�Si�t�

�i

, �11�

where the variable volatility �i��t� obeys a one-parameter
ARCH model �9� of the type

�i�
2�t� = ai + b��Si��t − 1��2 . �12�

Let us evaluate next the correlations between �Si��t� and the
driving factor �A�t�. These are given by

Ci,0� =
1

�i

��Si��A�T, �B1�

which, using Eq. �11�, becomes

Ci,0� =
1

�i
2 ���S̄i�T��i��A�T + �iC̄i,0��i���A�2�T� �B2�

as in Eq. �15�. Finally, the cross correlations between series i
and j are now given by

Ci,j� =
1

�i� j

���Si��Sj��T − ��Si��T��Sj��T� . �B3�

In the following, we wish to estimate Ci,j� by resorting to few
approximations. Since for i� j the terms containing the ran-
dom numbers 
 do play a minor role, we can write

�Si��t� �
�i��t�

�i

��S̄i�T + C̄i,0�i��t��A�t� , �B4�

and a similar expression for �Sj��t�. The corresponding aver-
age values then read

��Si��T �
��i��T

�i

��S̄i�T + C̄i,0��i��A�T, �B5�

and the cross-correlation term then becomes

��Si��Sj��T � ��i�� j��T
��S̄i�T

�i

��S̄j�T

� j

+ C̄j,0��i�� j��A�T
��S̄i�T

�i

+ C̄i,0�� j��i��A�T
��S̄j�T

� j

+ C̄i,0C̄j,0��i��A� j��A�T. �B6�

According to the above expressions, we find

��Si��Sj��T − ��Si��T��Sj��T

= ���i�� j��T − ��i��T�� j��T�
��S̄i�T

�i

��S̄j�T

� j

+ ���i��A� j��A�T − ��i��A�T�� j��A�T�C̄i,0C̄j,0

+ ��� j��i��A�T − �� j��T��i��A�T�C̄i,0
��S̄j�T

� j

+ ���i�� j��A�T − ��i��T�� j��A�T�C̄j,0
��S̄i�T

�i

. �B7�

Using this expression into Eq. �B3�, we recover Eq. �16�.
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